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Abstract

The use of statistical pattern recognition models to seg-

ment the left ventricle of the heart in ultrasound images has

gained substantial attention over the last few years. The

main obstacle for the wider exploration of this methodol-

ogy lies in the need for large annotated training sets, which

are used for the estimation of the statistical model param-

eters. In this paper, we present a new on-line co-training

methodology that reduces the need for large training sets for

such parameter estimation. Our approach learns the initial

parameters of two different models using a small manually

annotated training set. Then, given each frame of a test

sequence, the methodology not only produces the segmen-

tation of the current frame, but it also uses the results of

both classifiers to re-train each other incrementally. This

on-line aspect of our approach has the advantages of pro-

ducing segmentation results and re-training the classifiers

on the fly as frames of a test sequence are presented, but it

introduces a harder learning setting compared to the usual

off-line co-training, where the algorithm has access to the

whole set of un-annotated training samples from the begin-

ning. Moreover, we introduce the use of the following new

types of classifiers in the co-training framework: deep be-

lief network and multiple model probabilistic data associa-

tion. We show that our method leads to a fully automatic left

ventricle segmentation system that achieves state-of-the-art

accuracy on a public database with training sets containing

at least twenty annotated images.

1. Introduction

The automatic segmentation of the left ventricle (LV) of

the heart from ultrasound images has been one of the major

topics of research in the area of medical image analysis.

In a clinical setting, there are several advantages involved

in solving this problem, which include [7]: 1) increase of

∗This work was partially supported by the FCT (ISR/IST plurianual

funding) through the PIDDAC Program funds, Project HEARTTRACK

(PTDC/EEA-CRO/103462/2008) and Project VISTA(PTDC/EIA-

EIA/105062/2008).

(a) On-line co-training and expansion proposed in this paper.

(b) Original off-line co-training and expansion.

Figure 1. Proposed on-line co-training and expansion (a) and the

original off-line co-training and expansion (b) algorithms. At it-

eration t = 1, a distribution D+
i is used to sample from X+

i and

update the training set Si,1. The main difference of our algorithm

in (a) is that the distributionD+
i is limited to produce samples that

belong to the test image I1 being processed instead of the whole

subset X+
i in (b).

patient throughput; and 2) reduction of inter-user variation

in the LV delineation procedure. However, the viability of

an automatic LV segmentation methodology depends on its

ability to address several challenges present in the imaging

of the LV using ultrasound [4].

The use of statistical pattern recognition approaches for

solving the automatic LV segmentation problem has gained

momentum since the seminal work by Comaniciu and col-

leagues [6, 8]. In essence, pattern recognitionmethods build
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an LV segmenter by modeling statistically the appearance

and shape of the LV using a set of manually annotated im-

ages (i.e., the training set). One of the issues with this ap-

proach is that the statistical model usually contains a large

number of parameters, which model all possible appearance

and shape variations of the LV. Therefore, the robust esti-

mation of these parameters requires large training sets, con-

sisting of hundreds or thousands of manually annotated im-

ages [5, 8, 20]. However, the acquisition of large annotated

training sets is a hard task faced by researchers who wish to

study statistical pattern recognition approaches because of

the difficulty in assigning the annotation job to clinicians.

Therefore, methods that reduce the dependence on large an-

notated training sets are extremely important for the further

exploration of statistical pattern recognition models in med-

ical image analysis.

Semi-supervised learning [22] is one alternative to re-

duce the need of large annotated training sets in statistical

pattern recognition approaches. The main assumption be-

hind semi-supervised methods is that regions of high den-

sity in the feature space tend to have similar annotations,

and low density areas in the feature space represent regions

of transition between annotations. There are several classes

of semi-supervised models, but particularly important for

our work are the self-training methods [12, 15, 17, 18, 19]

and the co-training approaches [1, 3, 14]. These approaches

vary in terms of the statistical models used and the way of

classifying unannotated samples for re-training.

In this paper, we introduce a new on-line co-training ap-

proach for the problem of automatic LV segmentation from

ultrasound data. A small manually annotated training set

is used to provide an initial estimation of the parameters

of two separate statistical models that can segment the LV

from ultrasound images. Given a new test sequence, the

system uses both classifiers to produce hypotheses for LV

segmentations for each frame of the sequence, and the hy-

potheses that are segmented with confidence above a cer-

tain threshold are placed in the annotated training set for

re-training both classifiers. For each frame, the final seg-

mentation is built based on a combination of the hypotheses

produced by the two classifiers. One innovation is the on-

line re-training and segmentation processes of our approach

(see Fig. 1), which contrasts with the off-line re-training and

segmentation of the original co-training and expansion al-

gorithm [1, 3]. The main consequence of this innovation is

that the distribution used to generate un-annotated training

samples from a test sequence is different from the distribu-

tion used to generate the training set samples, making this

on-line co-training harder to solve than the off-line version.

Our solution to this issue involves the introduction of a new

assumption to the original co-training and expansion pro-

posal. Another innovation of our approach is with respect

to the classifiers used, where one is based on deep belief

networks [10], and the other is based on the probabilistic

data association model [2]. Contrary to boosting classi-

fiers more commonly found in co-training and self-training

methodologies [12, 14, 17, 18, 19], these two classifiers are

straightforwardly adapted from a batch to an incremental

on-line learning setting. The main result of the paper is that

we achieve competitive automatic LV segmentation results

in public databases using at least twenty manually anno-

tated training images, which represents a reduction of one

to two orders of magnitude in the size of the training sets

commonly needed by pattern recognition approaches.

2. Co-training and Expansion

Using the probably approximately correct (PAC) learn-

ing notation [1, 3], assume that x ∈ X denotes a data vector

and X represents the feature space, where X = X1 × X2

with X1 and X2 corresponding to two different feature

spaces representing the same data. The data vectors x are

drawn using a distribution D over X (notice that in prac-

tice this original distribution D leads to space specific dis-

tributions Di over Xi for i ∈ {1, 2}). The target function
ci : Xi → {accept, reject} takes an input data xi ∈ Xi and

accepts it with confidence or rejects it for i ∈ {1, 2} (note
that the target function ci(.) is generally unknown). LetX

+

and X− denote the positive and negative regions of X , re-

spectively, where X+
i = {xi|ci(xi) = accept} and X−

i =
Xi−X+

i , for i ∈ {1, 2}. Note that the positive region of the
original feature space can be defined as X+ = X+

1 ×X+
2 .

We can also define the marginal distributions ofD overX+

as D+, and over X− as D−. The learning algorithms used

in each feature space are denoted by Ai for i ∈ {1, 2} and
they produce hi : Xi → {accept, reject} by minimizing the
probabilistic error function PDi

[hi(xi) 6= ci(xi)] using the
distribution Di over the space Xi.

In the co-training algorithm, we initially have an anno-

tated training set that forms confidence sets for the two fea-

ture spaces, as in Si,0 ⊆ X+
i for i ∈ {1, 2}. The goal

of co-training and expansion algorithm is to bootstrap from

these initial sets using un-annotated data [1], and making

the following assumptions:

1. the learning algorithms can learn from positive data

only (i.e., annotated data), and

2. the underlying distribution D+ is ǫ−expanding (ǫ >

0).

The assumption 1 above means that ∀D+
i over X+

i , each

learning algorithm Ai produces the hi(.) such that [1]:

P (errorD
+

i

(hi) ≤ ǫ) ≥ 1 − δ, where ǫ, δ > 0 (this

means that the algorithm is probably correct when it is con-

fident about the result, and errorD
+

i

(hi) = PD
+

i

[ci(xi) 6=

hi(xi)]). According to Balcan et al. [1], this assumption 1
is natural if the positive class is cohesive and the negative

class is not. It is important to emphasize that in classifica-

tion problems where the visual classes have an easily rec-

ognizable appearance (e.g., faces), this assumption is easily

met. The assumption 2 uses the following definition [1]:



Definition D+ is ǫ-expanding if for any S1 ⊆ X1, S2 ⊆
X2, we have

PD+(S1 ⊕ S2) ≥ ǫ min
[
PD+(S1 ∧ S2), PD+(S̄1 ∧ S̄2)

]
,

where Si = Si,0

⋃
{xi|hi(xi) = accept}, ∧ denotes the

AND operator, and ⊕ represents the XOR operator. Note

that ǫ-expansion is necessary for the functionality of co-

training methods because if the confidence sets S1 and S2

do not expand, the algorithms A1 and A2 do not process

new training examples [1]. It is important to salient that

Balcan et al. [1] show that these two assumptions are suf-

ficient for the co-training algorithm, which means that it is

no longer necessary that the features X1 and X2 are inde-

pendent (given label) or weakly independent, as previously

assumed for co-training algorithms [3].

The algorithm described by Balcan et al. [1] consists of

an iterative process where at each step t (for t ∈ {1, ..., T}),
the confidence sets Si,t (for i = 1, 2) are augmented with
new samples that have been positively classified by the each

hi(.) (e.g., all x1 for which h1(x1) = accept are included

into the set S2,t, which is used by A2 to re-train h2(.), and
similarly all x2 for which h2(x2) = accept are included into

the set S1,t, which is used by A1 to re-train h1(.)). How-
ever, in Balcan’s algorithm, no restriction is imposed on the

samples from the un-annotated training set, which means

that they are drawn from the same distribution D+ used to

build the annotated training set. Furthermore, the whole un-

annotated training set is processed before forming the final

classifiers hi(.) (for i = 1, 2). Therefore, the confidence

sets S1,t and S2,t can be more easily expanded given the

large availability of un-annotated samples that may lie close

to the initial confidence set Si,0. We refer to this algorithm

as off-line co-training.

The on-line co-training algorithm proposed in this pa-

per receives as input frames from a test sequence, which is

denoted by I =
⋃T

t=1 It with the frame at instant t repre-

sented by It. Themain difficulty is that the original distribu-

tion D+ originally over X+ is now limited to the positive

subset of image It, which is denoted by I+
t . As a result,

compared to the off-line co-training, the set of un-annotated

samples comes from a different distribution, which makes

the co-training problem more difficult (we refer to this dif-

ferent distribution as D+
⋂

I+
t ). Furthermore, as we re-

quire the algorithm to produce segmentation results “on the

fly”, the classifiers h1(.) and h2(.) trained up to iteration t

must be able to produce hypotheses from image It, which

are thereby included in the confidence sets S1,t and S2,t.

This generation of new hypotheses assumes that:

PD+
T

I
+

t
(S1,t−1 ∨ S2,t−1) > τ > 0. (1)

This assumption is particularly relevant at t = 1, when
the probability of drawing samples from S1,0 or S2,0 us-

ing the distribution D+
⋂

I+
1 is bigger than the threshold

τ . This assumption will guarantee that new positive sam-

ples are generated from image It for augmenting the confi-

dence sets and re-training the classifiers h1(.) and h2(.) (see
Fig. 1). Empirically, we can guarantee that this assumption

is met by reducing the value of τ and observing whether the

confidence sets are growing. However, if the value of τ is

too small, then one may include false positives in the con-

fidence sets, which can be handled by the co-training and

expansion up to a certain extent [1].

2.1. On-line Co-training Algorithm

Assume that the original feature space Xi is composed

of a feature vector fi ∈ ℜ
F (represented by an image region

extracted from a bounding box of size F ) and an annotation

yi ∈ ℜ
2Y (denoting a list of Y 2-D points that represents

the LV contour), where

hi(xi) =

{
accept, if pi(yi, fi|θi) > τ

reject, otherwise
(2)

for i ∈ {1, 2}, where pi(.) ∈ [0, 1] represents the classi-
fier output that uses the feature space Xi and has a model

that can be described by the parameter vector θi. Initially,

a training set Si,0 ∈ X+
i is provided to estimate the param-

eters of both classifiers, and after being presented with the

frames It from a test sequence I (for t ∈ {1, ..., T}), the on-
line co-training algorithm targets the following objectives:

1) produce the segmentation y∗ for frame It, 2) produce

hypotheses {[yi, fi]|pi(yi, fi|θi,t−1) > τ, fi ⊆ It} to up-

date the confidence sets, and 3) re-train both classifiers with

updated confidence sets. Algorithm 1 describes the steps

in the proposed incremental co-training procedure in more

detail.

Algorithm 1 On-Line Co-training

1: Given initial training sets Si,0 ⊆ X+
i , estimate the parame-

ters θi,0 , for i ∈ {1, 2} with
θi,0 = arg maxθi

P

[yi,fi]∈Si,0
pi(yi, fi|θi)

2: for t = 1:T do

3: Update confidence sets:

Si = {(yi, fi)|pi(yi, fi|θi,t−1) > τ, fi ⊆ It}
S1,t = S1,t−1

S

S2, S2,t = S2,t−1

S

S1
(3)

4: Training:

θi,t = arg max
θi

X

[yi,fi]∈Si,t

pi(yi, fi|θi), for i ∈ {1, 2}

(4)

5: Segmentation:

y∗ = 1
2

P2
i=1 Zi

P

(yi,fi)∈Si
yipi(yi, fi|θi,t) (5)

where Zi denotes a normalization constant that assigns all

probability mass to the elements of Si (from step 3 above).

6: end for

The major issues with Alg.1 are the size of Si,0 (i.e., the

size of the initial training set), and the threshold τ in (3)



of step 3, which is related to τ in the assumption (1). In

this paper, we introduce an empirical study on both issues

in Sec. 5.

3. Classifiers and Features

The choice of classifiers and features to use is arbitrary

in the framework of co-training and expansion. However,

it is important to guarantee that the two assumptions of co-

training and expansion are met (see Sec. 2) in addition to the

assumption in (1) proposed for the on-line co-training. As-

sumption 1 in Sec. 2 is met depending on the classification

problem being addressed. For the problem of LV classifica-

tion and segmentation, this assumption is met because the

positive class is cohesive and the negative class is not (i.e.,

LV sub-images are in general similar, while non-LV images

can vary substantially - see Fig. 2). Assumption 2 is met

by verification. That is, if the co-training algorithm is able

to produce complementary S1,t and S2,t then both param-

eter vectors θ1 and θ2 will be updated. Eventually, after

a few test images are analyzed, both sets will be similar to

each other, which means that the assumption 2 is no longer

met, resulting in a stagnation of both models, which may

be enough to successfully segment the remaining test im-

ages. Finally, the assumption in (1) depends on the value

of τ . As a result, the choice of which classifiers and fea-

tures to use is not particularly relevant so long as: 1) they

are easily re-trained, and 2) they show results relatively dif-

ferent from each other (especially for small values of t, i.e.,

at the beginning of the test sequence). The classifier used

to compute p1(y1, f1|θ1) is based on deep belief networks
(DBN) [10], and p2(y2, f2|θ2) is based on probabilistic data
association models [2]. Features f1 and f2 consist of the

pixel gray values within an image sub-window, but p1(.)
runs the classification process using the features produced

by the DBN, while p2(.) performs the classification using
normal line profiles extracted at the key-points of y2.

3.1. Deep Belief Network Classifier

The classifier p1(y1, f1|θ1) is based on deep belief net-
works (DBN) [10], which consists of a neural network con-

taining a relatively large number of hidden layers. Deep be-

lief networks have been recently explored for the problem

of LV segmentation by Carneiro et al. [5], who showed that

this classifier can achieve state-of-the-art results with 400

annotated training images. The use of DBN in this work can

be justified based on its straightforward adaptation from an

off-line (batch) to an on-line (incremental) learning. For in-

stance, at each iteration of the co-training, only the network

weights are updated. This is remarkably different frommost

of the semi-supervised learning approaches in the literature

based on boosting classifiers [12, 14, 17, 18, 19], which re-

quire more complex update schemes.

The DBN classifier is decomposed as follows [5]:

p1(y1, f1|θ1) = p(f1|θ
(r)
1 )p(y1|f1, θ

(n)
1 ), (6)

Figure 2. Original training image (top left) with the manual LV

segmentation in yellow line and star markers (top middle) and the

rectangular window used to extract the image patch. This patch is

obtained by aligning the base and apical points of a canonical con-

tour as shown in the top-right frame. The images on the second

row display several positive patches (and respective LV annota-

tions in dashed red contours), while the third row displays patches

not containing the LV (i.e., the negative patches).

where p(f1|θ
(r)
1 ) represents the rigid classifier and

p(y1|f1, θ
(n)
1 ) denotes the non-rigid classifier. The rigid

classifier determines the probability that f1 represents an

image region containing a left ventricle aligned in the same

way as the training set images (see positive patches in

Fig. 2). The non-rigid classifier determines the probabil-

ity that the contour y1 represents an LV segmentation for

the image region f1 (see Fig. 2). The parameters of the

rigid classifier θ
(r)
1 are the following: 1) number of hid-

den layers, 2) number of nodes per layer, and 3) the pa-

rameters of the logistic model of each connection between

network nodes. The non-rigid classifier consists of a sepa-

rate DBN where the parameters θ
(n)
1 comprises not only the

parameters 1-3 above, but also the parameters of the shape

model, which is represented by a principal component anal-

ysis (PCA) model that reduces the dimensionality of the an-

notation [5]. The DBN parameters θ
(r)
1 and θ

(n)
1 are learned

separately in two stages with maximum a posteriori strategy

using the training procedure proposed by Hinton and col-

leagues [10], which consists of the following two stages: 1)

unsupervised training where an auto-encoder is built, and a

2) supervised learning based on back-propagation.

The inference consists of a rigid detection followed by

a non-rigid LV segmentation (see Fig. 3). In the rigid de-

tection, several image regions are sampled, from which

p(f1|θ
(r)
1 ) are computed, then a local search approach is ap-

plied to find local maxima. Then, for each local maximum

f1, in terms of p(f1|θ
(r)
1 ), a search procedure is conducted

to find the local maxima in terms of p1(y1, f1|θ1) [5].



Figure 3. DBN classifier.

Figure 4. Multiple Model Probabilistic Data Association.

3.2. Multiple Model Probabilistic Data Association
Classifier

The multiple model probabilistic data association

(MMDA) classifier p(y2, f2|θ2) is based on the data asso-
ciation framework originally proposed by Bar-Shalom [2].

This model has been recently explored by Nascimento et

al. [16], who showed state-of-the-art results for the problem

of LV segmentation from ultrasound data. This classifier as-

sumes the following LV model: 1) the LV has a prior shape,

2) the LV border is represented by image edges, and 3) the

distribution of gray values is consistent inside and outside

the LV. Specifically, the MMDA classifier is defined as fol-

lows:

p(y2, f2|θ2) =

∫

ey2

∫

K

p(y2, f2, ỹ2,K|θ2)dỹ2dK, (7)

where

p(y2, f2, ỹ2,K|θ2) ∝ p(K|f2, ỹ2, θ
(s)
2 )p(y2|K, θ

(q)
2 ). (8)

In (7), we introduce the setK = {kl}
|K|
l=1 containing the |K|

hypotheses generated by the shape probabilistic data associ-

ation (S-PDA) [16], where kl = [zl,yl] with zl ∈ {0, 1}Y ,

yl ∈ ℜ
2Y , zl(j) = 1 indicating that the jth contour point

of the lth hypothesis contains an edge element supporting

the presence of an LV contour at key-point yl(j) ∈ ℜ2,

and
∑|K|

l=1 zl(j) ≤ 1 for all j ∈ {1, ..., Y }. Note that the
search for edges happens in the image region represented

Training set D

Test set T (A) Test set T (B)

Figure 5. First images of a subset of the training and test sets.

by f2 using an initial guess represented by ỹ2. As a re-

sult, the p(K|f2, ỹ2, θ
(s)
2 ) in (7) is one only for the set K

of hypotheses generated by the S-PDA. Finally, the estima-

tion of p(y2|K, θ
(q)
2 ) is based on the qualitative probability

(QP) [13], which estimates the likelihood of having the con-

tour y2 given the set of possible hypotheses K taking into

consideration the probabilities of missing edges, overlap-

ping edges, and contour continuation.

The vector θ
(s)
2 used by the S-PDA in (7) consists of the

following parameters: 1) gray value inside the LV, 2) gray

value outside the LV, and 3) value of |K|. The QP term in

(7) is defined as follows:

p(y2|K, θ
(q)
2 ) = α# hitsβ# missesν# overlaps, (9)

where # hits denotes the number of times the contour

points of the query y2 in (7) lands on hypothesis points for

which zl(j) = 1; # misses represents the number of times

a point in y2 sits on a hypothesis that has zl(j) = 0 for all

l ∈ {1, .., |K|}; and # overlaps represents the number of

times a point in y2 sits on a hypothesis that has zl1(j) = 0
along with another hypothesis for which zl2(j) = 1 and

l1 6= l2 (l1, l2 ∈ {1, .., |K|}). For instance, according to the
example in Fig. 4, we have 5 hits, 1 miss, and 5 overlaps.

Consequently, θ
(q)
2 comprises the values for α, β, and ν.

The parameters θ
(s)
2 and θ

(q)
2 are learned separately

by a maximum a posteriori approach. We simplify the

learning process by defining a small set of possible val-

ues for each parameter and select the values that maximizes∑
[y2,f2]∈S2,t

p2(y2, f2|θ2). The inference is also run in

two stages, where the S-PDA algorithm uses the set of ini-

tial guesses obtained by sampling the results produced by

the DBN classifier from (6). Each initial guess produces

one set K of hypotheses, and the QP classifier combines

these hypotheses in this set to maximize p(y2|K, θ
(q)
2 ) in

(9), thereby generating a hypothesis (y2, f2).



4. Experimental Setup

We use the two sets of annotated data available from

[16]. The training set D contains 400 ultrasound images

of the left ventricle of the heart, which have been taken

from 12 sequences (12 subjects with no overlap), where

each sequence contains an average of 34 annotated frames

(Fig. 5). This set contains images using the apical two and

four-chamber views. The test set contains two sequences of

80 images, where each sequence has 40 annotated images

(two subjects with no overlap). This set is denoted by T
with sequences A and B (Fig. 5), and there is no overlap

between subjects in sets D and T . All images in D and

T have been annotated by a cardiologist [16]. Note that

all quantitative comparisons of various algorithms [16] use

only the two sequences in this test set, so we use the same

sequences in order to provide a fair comparison with the

other methods.

For the on-line co-training procedure in Alg. 1, the pa-

rameters of the DBN classifiers θ
(r)
1 and θ

(n)
1 presented in

(3)-(5) are initially estimated with a subset ofS1,0 ⊆ D. For
training both classifiers, the number of hidden layers vary

from 1 to 4, and the number of nodes per layer vary from 50

to 400. The parameters θ
(s)
2 and θ

(q)
2 of the MMDA classi-

fier in (7) are estimated using the S2,0 ⊆ D, where the pa-
rameters to be estimated varied as follows: α ∈ [1.5, 3.0],
β ∈ [0.6, 0.95], ν ∈ [0.1, 0.3], and |K| ∈ {3, 4, 5}. The
sets Si,0 (for i ∈ {1, 2} are formed by uniformly sampling
D with sizes |Si,0| ∈ {2, 6, 10, 20, 50, 100}. In order to

be able to show mean and standard deviation results, we

produced three different sets Si,0 for each one of the sizes

shown above (this means that Alg. 1 is run 3×6 = 18 times
for each test sequence).

The error results considered in this work compare the

contour estimates with manual reference contours using

the error measures defined below. Let y∗,y ∈ ℜ2Y rep-

resent the estimated and reference LV contours compris-

ing Y 2-D points, respectively, with the jth point (for

j ∈ {1, ..., Y }) denoted by y(j) ∈ ℜ2. The smallest dis-

tance from a point y∗(j) to the curve y is d(y∗(j),y) =
mink ||y

∗(j) − y(k)||2, which is known as the distance to
the closest point (DCP). The average error measure is de-

fined as follows [16]:

dAV(y∗,y) =
1

Y

Y∑

j=1

d(y∗(j),y). (10)

The Hausdorff distance (HDF) [11] is defined as in:

dHDF(y∗,y) =

max
(
max

j
{d(y∗(j),y)}, max

k
{d(y(k),y∗)}

)
.

(11)

We also use the Hammoude distance (HMD) [9], repre-
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Figure 6. Mean and standard deviation of error measures (10) and

(11) as a function of τ for several initial training sets of variable

sizes using test sequence T (A). The results for (12) and (13) are
similar but omitted due to lack of space.

sented by:

dHMD(y∗,y) =
#((Ry∗ ∪Ry)− (Ry∗ ∩Ry))

#(Ry∗ ∪Ry)
, (12)

where Ry∗ represents the image region delimited by the

contour y∗ (similarly for Ry), and #(.) denotes the num-
ber of pixels within the region described by the expres-

sion in parenthesis. Finally, the mean absolute distance

(MAD) [21] is defined by:

dMAD(y∗,y) =
1

Y

Y∑

j=1

‖y∗(j)− y(j)‖2. (13)

5. Experimental Results and Discussion

In this section, we show empirical evidence of the im-

portance of two key parameters in Alg.1, which are: 1)

the threshold τ in (3), and 2) the size of Si,0. We also

show a quantitative comparison between the segmentation

algorithm using the parameters θi,0 for the whole test

sequence (i.e., without co-training), and the on-line co-

training methodology shown in Alg.1. Furthermore, we

compare the performance of our algorithm and of recently

proposed LV detectors [5, 8, 16]. In terms of running time,

this system needs around one minute per frame to produce

the segmentation results and to re-train both classifiers us-

ing a state-of-the-art laptop computer with a non-optimized

Matlab implementation.

Figure 6 uses T (A) (i.e., the sequence A of the test

set T ) to show how the error measures (10) - (13) vary

as a function of τ . The results in Fig. 6 are shown us-

ing the average and standard deviation results after running

Alg. 1 with three different initial training sets Si,0 of sizes

{2, 6, 10, 20, 50, 100}, as explained in Sec. 4. Specifically,
we see that smaller and more stable results are obtained for

values of τ < 10−5, and the results degrade significantly for

τ ≥ 0.1. As a result we set τ = 10−10 for all experiments

below.

The final experiment shows how the on-line co-training

method (denoted by ’Co-training’) improves the perfor-

mance of the LV segmentation system that uses the initial



parameter values θi,0 (for i ∈ {1, 2}) for the whole test se-
quence without co-training (this system is denoted by ’Su-

pervised’). We also compare the results with the perfor-

mance of the following methods: 1) the supervised train-

ing method of Carneiro et al. [5] that uses 400 training

images (i.e., this is an off-line supervised method); 2) the

supervised training approach by Georgescu et al. [8] that

also uses hundreds of training images (i.e., this is also an

off-line supervised method); and 3) the deformable model

by Nascimento et al. [16] that does not use any training

set, but requires a manual initial guess for the optimization

function (i.e., this is an off-line unsupervised method). We

show the results for the three different training sets of sizes

{2, 6, 10, 20, 50, 100} using mean and standard deviation

for each error measure (Fig. 7). Compared to the supervised

training, co-training usually reduces the standard deviation

and the average error. Notice that ’Co-training’ starts pro-

ducing competitive results using initial training sets of size

20 (but for sequence T (A) the system shows competitive

results with initial training sets containing less than 10 im-

ages). Figure 8 displays several cases showing the improve-

ment produced by the ’Co-training’ compared to ’Super-

vised’ (both systems used an initial training set Si,0 with 10

training images).

6. Conclusions

In this paper, we presented a novel on-line co-training

methodology applied to the fully automatic segmentation

of the left ventricle of the heart from ultrasound data. As

opposed to the off-line co-training algorithm [1, 3], our al-

gorithm allows for on-line learning and segmentation pro-

cesses, which enables the segmentation of new frames of

a test sequence and the re-training of the classifiers on the

fly. The on-line nature of our algorithm implies that the

distribution that generates test samples is different from the

original distribution of training samples, which complicates

the functionality of the co-training algorithm. We propose

a solution for this issue by imposing a criterion on how

to select un-annotated images to be included into the new

training sets. Another novelty of the algorithm is the use

of deep belief network and data association classifiers on

the co-training framework. The results show that it is possi-

ble to have competitive results with training sets containing

at least twenty annotated training images, which is a sig-

nificantly smaller training set than the ones used in current

state-of-the-art pattern recognition methods.
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